Энциклопедия "Авиация" (1998)
Подъёмная сила

В начало энциклопедии

По первой букве
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Подъёмная сила

Подъёмная си́ла — проекция главного вектора аэродинамических сил (см. Аэродинамические силы и моменты), приложенных к обтекаемой поверхности тела, на нормаль к направлению его движения. Объяснение механизма образования и определение П. с. (так же, как и сопротивления аэродинамического) являются фундаментальными проблемами аэродинамики, в разработку которых внесли вклад многие выдающиеся учёные мира.

Появление П. с. Y при обтекании профиля и крыла потоком несжимаемой жидкости объяснил Н. Е. Жуковский (1906), связав её с образованием вихрей в потоке; П. с. Y профиля связана с циркуляцией скорости Г вокруг него соотношением (см. Жуковского теорема)

Y = ρVГ,

Где ρ — плотность жидкости, V — скорость набегающего потока. Поскольку возникновение вихрей в потоке идеальной жидкости невозможно, то появление их и, следовательно, П. с. есть результат проявления неидеальных свойств среды — действия трения. Несмотря на это, механизм образования П. с. моделируется в рамках теории идеальной жидкости путём введения циркуляции скорости, значение которой определяется на основе Чаплыгина—Жуковского условия (постулата) о конечности скорости на задней кромке профиля и крыла, при выполнении этого условия около профиля реализуется такое поле течения, при котором на его верхней стороне имеет место разрежение, а на нижней — повышение давления; этот перепад давлений определяет П. с. профиля.

В сжимаемом дозвуковом потоке существует такой же механизм образования П. с., который также моделируется в рамках теории идеального газа. Для тонких профилей обычно используется линеаризированная теория, согласно которой для заданного профиля значения П. с. для сжимаемой (Yсж) и несжимаемой (Yн) жидкостей с одинаковыми параметрами на бесконечности связаны между собой соотношением (см. Прандтля—Глауэрта теория):

Yсж = Yн/(1-М2)1/2,

где М < 1 — Маха число полёта.

Такой механизм образования П. с. обусловил типичную конфигурацию дозвукового самолёта, в которой чётко разделены функции между крылом и фюзеляжем: крыло — для получения П. с., фюзеляж — для размещения экипажа, оборудования и полезной нагрузки.

При сверх- и гиперзвуковых скоростях полёта (М > 1) механизм создания П. с. иной. При этих скоростях на наветренной стороне профиля образуется область повышенного давления (pнв > p) из-за сильного торможения потока в скачках уплотнения, а на подветренной — область разрежения (p > рпв ≥ 0; рнв, рпв, p — соответственно давления на наветренной и подветренной сторонах и в набегающем потоке). С увеличением числа Маха вклад подветренной стороны в создание П. с. быстро уменьшается. Этот механизм образования П. с. также моделируется в рамках теории идеального газа. Кроме того, он в общих чертах соответствует теории «ударного» возникновения давления при обтекании тела, которую предложил И. Ньютон (см. Ньютона теория обтекания), что и обусловило широкое применение формулы Ньютона, связывающей давление с местным углом наклона поверхности к направлению набегающего потока, для оценки аэродинамических характеристик гиперзвуковых летательных аппаратов.

Другой механизм образования П. с. при сверхзвуковых скоростях полёта привёл к изменению конфигурации сверх- и гиперзвуковых летательных аппаратов, у которых уже нет строгого разделения функции между крылом и фюзеляжем, и, по существу, вся его наветренная сторона принимает участие в создании П. с. В связи с этим рассматривается даже специальный класс летательных аппаратов — волнолёты, П. с. которых создаётся за счет сжатого слоя за ударной волной.

Всплывную силу также часто называют П. с.

В. А. Башкин.

В начало энциклопедии
Главная