Энциклопедия "Авиация" (1994)
Статьи на букву "П" (часть 4, "ПОП"-"ПРО")

В начало энциклопедии

По первой букве
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
Предыдущая страница Следующая страница

Статьи на букву "П" (часть 4, "ПОП"-"ПРО")

Попов Сергей Алексеевич

Попов Сергей Алексеевич (1909-1969) - советский воздухоплаватель, организатор и руководитель подготовки пилотов свободных аэростатов ГВФ. Окончил воздухоплавательную школу Осоавиахима (1932). В 1932-1940 командир отдельной воздухоплавательной группы «Дирижаблестроя»; руководил проведением учебных полётов студентов Дирижаблестроительного учебного комбината ГВФ и тренировочных полётов лётного состава учебно-опытной эскадры дирижаблей ГВФ. По предложению П. для тренировочных полётов применялись аэростаты типа «шары-прыгуны» объёмом 150 м3, летавшие с одним пилотом на высоте 200-2000 м до 20 ч. В 1942 по инициативе П. было организовано воздухоплавательное подразделение в ВВС, занимавшееся подготовкой парашютистов. После Великой Отечественной войны П. - спортивный комиссар по проведению рекордных полётов на аэростатах.

Пороховой двигатель

Пороховой двигатель - см. Ракетный двигатель твёрдого топлива

Пороховщиков Александр Александрович

Пороховщиков Александр Александрович (1892-1943) - русский конструктор, предприниматель, лётчик. Будучи гимназистом, построил на заводе «Дукс» самолёт (1909), одобренный Н. Е. Жуковским. В 1911 в Риге организовал опытную мастерскую, где построил расчалочный моноплан простейшей конструкции «Пороховщиков №1» и сам летал на нём. Оригинальный полутораплан двухбалочной схемы - двухместный разведчик, название «Би-кок» №2 («Двухвостка»), он построил в 1914. В 1915 мастерская П. в Петрограде, преобразованная в завод, выпускала самолёты иностранных марок, а также его учебный биплан П-IV (1917). В 1918 П. сдал официальные испытания на звание военного лётчика, затем служил в советских авиационных частях, возглавлял авиамастерские, одновременно продолжая конструкторскую деятельность. В 1919-1923 выпускались небольшие серии учебных самолётов его конструкции П-IV бис, П-IV 2бис, П-VI бис (все они имели бипланную схему с хвостовой фермой). В 1923 П. переехал в Москву, где работал инженером в различных организациях и на заводах. Совместно с П. некоторое время работал известный впоследствии советский авиаконструктор.

Порошковые материалы

Статья большая, находится на отдельной странице.

Поршневой двигатель

Поршневой двигатель - см. в статье Двигатель авиационный.

Порыв ветра

Порыв ветра - нормированный - значение скорости потока неспокойного воздуха, задаваемое в Нормах прочности летательного аппарата, при котором производится расчёт нагрузок на летательный аппарат с целью обеспечения его достаточной прочности в условиях полёта. Нагрузки на летательный аппарат при действии П. в. возникают вследствие изменения аэродинамических сил, связанного с изменением углов атаки, скольжения и скорости движения летательного аппарата относительно воздуха. Нормированный П. в. зависит от типа летательного аппарата и режимов полёта. См. также Болтанка.

Посадка

Статья большая, находится на отдельной странице.

Посадочная скорость

Посадочная скорость - скорость самолёта в момент касания основными его опорными устройствами поверхности взлётно-посадочной полосы на посадке. Уменьшение П. с. при прочих равных условиях сокращает дистанцию пробега самолёта после приземления. Уменьшение П. с. достигается снижением удельной нагрузки на крыло и увеличением подъёмной силы крыла путём применения механизации крыла к энергетической механизации крыла. Значения П. с. меняются примерно от 80 км/ч у легкомоторных, например, спортивных, самолетов до 300 км/ч и более у скоростных.

Посадочный крюк

Посадочный крюк - см. Тормозной крюк.

Пост Уайли

Пост Уайли (1898-1935) - американский лётчик. В 1933 совершил первый кругосветный перелёт в одиночку (с посадками) на самолёте «Вега» фирмы «Локхид». Двумя годами ранее он выполнил аналогичный перелёт на том же самолёте совместно с X. Гэтти. В 1935 провёл испытания высотного скафандра в условиях длительного полёта на высоте 9100 м. В том же году погиб вместе со своим спутником писателем У. Роджерсом на Аляске при попытке совершить перелёт через Северный полюс на гидросамолёте.

Постановщик помех

Постановщик помех - летательный аппарат, предназначенный для подавления радиоэлектронных средств (РЭС) противника с целью обеспечения боевых действий своих войск. П. п. могут использоваться для радио- и радиотехнической разведки, а также тренировки наземных, корабельных операторов РЭС и экипажей летательных аппаратов в условиях помех. По типу летательных аппаратов П. п. подразделяются на самолёты, вертолёты, аэростаты и другие пилотируемые и беспилотные летательные аппараты; по месту базирования - на палубные и наземного базирования, по типу установленных средств радиоэлектронного подавления (РЭП) - на постановщики активных и пассивных помех. Наиболее распространены самолёты-П. п. Они обеспечивают прикрытие боевых порядков войск, прикрытие пусков управляемого оружия, дезорганизацию управления войсками противника. Пилотируемые П. п. создаются на базе бомбардировщиков, истребителей-бомбардировщиков, транспортных и других самолётов. Основные способы ведения боевых действий П. п.: создание помех из специальных зон, из боевых порядков и при полёте по самостоятельному маршруту. Беспилотные П. п. представляют собой модификации многоцелевых беспилотных летательных аппаратов, специализированных для выполнения отдельных задач РЭП (подавление радиолокационных станций обнаружения, линий связи и т. д.). Беспилотные П. п. действуют в основном в зоне противовоздушной оборон противника.

Особенности конструкции П. п.: изменение конфигурации летательного аппарата в связи с размещением дополнительного оборудования, установка на фюзеляже, крыле и киле большого числа дополнительных антенн и т. д. Средства РЭП могут размещаться внутри фюзеляжа либо в подвесных контейнерах. Средства РЭП П. п. объединяются в единый комплекс. В него входят аппаратура информационного обеспечения (устройства для обнаружения, измерения параметров сигналов РЭС противника и их пеленгации), устройства отображения информации (экраны и табло), управления, ЭВМ и исполнительные устройства (станции активных помех для подавления РЭС систем управления войсками и оружием противника, станции активных помех для подавления линий УКВ связи и наведения истребителей, устройства для выброса средств РЭП одноразового использования, а также средства для индивидуальной защиты П. п. от поражения оружием противника).

Впервые П. п. были использованы английскими ВВС в 1943. Во время Великой Отечественной войны советские ВВС подавляли РЭС противника с самолётов дальней авиации при нанесении ими ударов по объектам Германии. Специализированные самолёты-П.п. получили развитие в 50-х гг. В войнах на Ближнем Востоке (1967 и 1973) использовались также беспилотные П. п.

Поступь винта

Поступь винта - расстояние, проходимое воздушным винтом в осевом направлении за время одного оборота. Определяется отношением поступательной скорости V самолёта (в м/с) к числу оборотов n винта за 1 с. На практике обычно используется относительная П. в. (λ):

(λ) = V/(nD),

где D - диаметр винта.

Потез

Потез (Soci(é)t(é) des avions et moteurs Henri Potez) - самолётостроительная фирма Франции. Образована в 1916 под название СЕА (SEA, Soci(é)t(é) d'etudes a(é)ronautiques), в 1919-1937 называется «Аэроплан Анри Потез» (Aeroplanes Henri Potez), в 1937 вошла в состав «Норд авиасьон», в 1953 вновь стала самостоятельной, получив указанное название, с 1967 в составе «Сюд авиасьон». Фирма выпускала пассажирские, туристские и военные самолёты. Наиболее известны лёгкий многоцелевой и разведывательный самолёт Потез 25 (первый полёт в 1925, построено около 4 тысяч в 87 вариантах) и истребитель-бомбардировщик Потез 63 (1936, построено 702). Небольшая фирма «Потез аэронотик» (Potez Aeronautique) в 80-х гг. выпускала авиационное оборудование и выполняла субконтрактные работы.

Потенциал скорости

Потенциал скорости (от латинского potentia - сила) - скалярная функция (φ) пространственных координат и времени, градиент которой равен вектору скорости V среды:

V = grad(φ).

П. с. существует для безвихревых течений, и введение П. с. позволяет эффективно их исследовать.

Уравнение для определения П. с. получается в результате подстановки приведённого выражения в неразрывности уравнение. Для несжимаемой жидкости П. с. удовлетворяет уравнению Лапласа ((∆ φ) = 0) и является гармонической функцией. В этом случае П. с. допускает простую физическую интерпретацию: П. с. данного распределения скорости безвихревого течения есть увеличенный в -1/Q (Q - плотность среды) раз импульс сил давления, требуемый для приведения среды (первоначально находившейся в состоянии покоя) в данное движение.

Для заданного поля скоростей П. с. в произвольной точке В можно найти интегрированием вдоль некоторой кривой, начинающейся в точке А с известным значением потенциала:

(φ)в = (φ)a + ∫ваVdr,

где dr - направленный элемент кривой. При движении в односвязной области П. с. является однозначной функцией r, а значение интеграла не зависит от пути интегрирования. Для многосвязной области П. с. в общем случае неоднозначен, и его значение в точке В зависит от формы кривой, вдоль которой проводится интегрирование.

Потенциал ускорения

Потенциал ускорения - скалярная функция Ф пространственных координат и времени t, градиент которой равен вектору ускорения W.

Существует для безвихревых течений и при движении несжимаемой жидкости удовлетворяет, как и потенциал скорости, уравнению Лапласа. В аэро- и гидродинамике используется при исследовании обтекания профилей и крыльев дозвуковыми и сверхзвуковыми потоками идеального газа на основе линеаризованных уравнений (см., например, Прандтля-Глауэрта теория).

Потенциальное течение

Потенциальное течение - течение жидкости или газа, для которого существует потенциал скорости (см. Безвихревое течение).

Потеря эффективности органа управления

Статья большая, находится на отдельной странице.

Потолок

Потолок - летательного аппарата - наибольшая высота, которую может набрать летательный аппарат при данном полётном весе. Различают статический потолок (для вертолётов - потолок висения), практический потолок и динамический потолок. П. является одной из основных характеристик, определяющих тактические возможности летательного аппарата: преодоление противовоздушной обороны, перехват высотных целей, действия в высокогорных условиях (для вертолётов) и т. п.

Потолок висения

Потолок висения - вертолёта - максимальная высота, на которой вертолёт в заданных условиях (барометрическое давление, температура и влажность воздуха) и при заданном полётном весе способен висеть не снижаясь без влияния воздушной подушки при горизонтальной воздушной скорости летательного аппарата, равной нулю. П. в. тем больше, чем меньше отношение массы вертолёта к мощности его двигателей и к ометаемой площади несущего винта и чем больше относительный кпд (аэродинамическое совершенство) несущего винта и отношение мощности, передаваемой на несущий винт, к мощности двигателей.

Правила полётов

Статья большая, находится на отдельной странице.

Практическая дальность

Практическая дальность - полёта - расстояние, которое может пролетать летательный аппарат при заданном состоянии атмосферы с учётом расхода топлива на запуск и опробование двигателей, руление перед взлётом, взлёт, предпосадочный манёвр, посадку, руление после посадки, а также с учётом аэронавигационного запаса топлива, определяемого для соответствующего типа летательного аппарата Нормами лётной годности. П. д. существенно зависит от массы Целевой нагрузки. Зависимость «нагрузка - дальность» является одной из основных характеристик летательного аппарат. На этой зависимости можно выделить три характерных участка: 1 - ограничение по максимальной целевой нагрузке (в основном обусловлено прочностью конструкции); 2 - ограничение по взлётной массе; 3 - ограничение по массе топлива (ёмкость топливных баков).

Практический потолок

Практический потолок - летательного аппарата - наибольшая высота, на которой при полёте с постоянной горизонтальной скоростью летательный аппарат располагает небольшим избытком тяги (мощности), достаточным для подъёма с некоторой вертикальной скоростью. Обычно за П. п. принимают такую высоту, на которой максимальная вертикальная скорость (для летательных аппаратов различного типа) составляет 0,5-5 м/с. В связи с тем, что сверхзвуковые самолёты легко могут превышать П. п., используя диапазон динамических высот, это понятие для них становится условным (см. Динамический потолок). Однако П. п. остаётся важной характеристикой при сравнении летательных аппаратов различных типов и при контроле качества их серийного производства.

Прандтль Людвиг

Прандтль Людвиг (1875-1953) - немецкий учёный в области механики, один из основателей теоретической и экспериментальной аэрогидромеханики, создатель научной школы по прикладной аэро- и гидромеханике. Окончил Высшее политехническое училище в Мюнхене. С 1901 профессор Высшего технического училища в Ганновере. Директор Института гидро- и аэродинамики кайзера Вильгельма в Гёттингене (1925-47). Основные труды по аэро- и гидромеханике, теории упругости и пластичности, газовой динамике и динамической метеорологии.

Ввёл представление о пограничном слое, заложил основы теории отрывного течения, изучал вопросы теплообмена (см. Прандтля число). Создал полуэмпирическую теорию турбулентности, исследовал турбулентные течения в трубах и пограничном слое, переход ламинарного течения в турбулентное. Разработал приближённую теорию самолётного крыла конечного размаха для малых Маха чисел полёта, линеаризованную теорию обтекания тел дозвуковым потенциальным потоком невязкого совершенного газа (совместно с Г. Глауэртом; см. Прандтля - Глауэрта теория). Одним из первых занялся сверхзвуковой аэродинамикой (см. Прандтля - Майера течение). В 1907-1909 создал первую аэродинамическую трубу замкнутой схемы.

Прандтля - Глауэрта теория

Статья большая, находится на отдельной странице.

Прандтля - Майера течение

Прандтля - Майера течение (по имени немецких учёных Л. Прандтля и Т. Майера (Th. Meyer) - плоскопараллельное течение газа, возникающее при движении равномерного сверхзвукового потока вдоль параллельной ему твёрдой поверхности, которая плавно переходит в искривлённый участок с выпуклостью в сторону потока. П. - М. т. широко распространено как в чистом виде, так и в качестве отдельных фрагментов сложных сверхзвуковых течений. Вследствие того, что одно семейство характеристик начинается в равномерном потоке, характеристики другого семейства прямолинейны, а образом П. - М. т. в плоскости годографа является отрезок эпициклоиды (см. Характеристик метод, Годографа метод). Эти свойства иногда используются для определения П. - М. т. По аналогии с одномерным нестационарным течением П. - М. т. также называют простой волной. При обтекании угла, большего 180(°), реализуется автомодельное течение газа: исходящие из угловой точки характеристики образуют веер (аналог так называемой центрированной волны).

В П. - М. т. газодинамические переменные сохраняют постоянные значения вдоль прямолинейных характеристик. Местное Маха число связано с углом их наклона уравнением эпициклоиды, остальные параметры выражаются через число Маха по формулам изоэнтропического течения расширения.

В отличие от непрерывного П. - М. т. расширения с расходящимся пучком прямолинейных характеристик, при сверхзвуковом обтекании стенки с вогнутостью в сторону потока происходит сжатие газа, характеристики образуют сходящийся пучок и на некотором расстоянии от стенки пересекаются, что свидетельствует о возникновении «висячего» скачка уплотнения.

Прандтля число

Прандтля число (по имени Л. Прандтля) - безразмерный параметр Рг, равный произведению удельной теплоёмкости при постоянном давлении ср на динамическую вязкость (μ), делённому на теплопроводность (λ):

Pr = cp(μ)/(λ).

Характеризует отношение количества теплоты, выделяемой в данной точке потока вследствие вязкой диссипации, к количеству теплоты, отводимой от неё путём теплопроводности. П. ч. является важной теплофизической характеристикой среды при исследовании аэродинамического нагревания летательного аппарата. Для воздуха Рг (≈) 0,7.

Аналогично определяется П. ч. для турбулентного течения с использованием значений турбулентных вязкости и теплопроводности.

Пратт энд Уитни

Статья большая, находится на отдельной странице.

Предельная линия тока

Предельная линия тока - линия тока вязкого течения на поверхности тела, касательная к которой в каждой точке поверхности тела совпадает с направлением вектора касательного напряжения трения в этой точке. Поэтому П. л. т. иногда называют линией поверхностного трения.

Экспериментально спектр П. л. т. (см. Спектр потока) на обтекаемой поверхности может быть определён, например, методом размываемых точек (см. Визуализация течений). Знание спектра П. л. т. даёт богатую информацию об особенностях течения вязкой жидкости или газа вблизи обтекаемой поверхности и в совокупности с другиим методами исследования позволяет установить и понять картину обтекания рассматриваемого тела. Эта информация особенно ценна для тех областей течения, которые трудно поддаются расчёту, например, для областей отрыва и присоединения потока.

Предельные линии

Предельные линии - в газовой динамике - особые линии (поверхности) в поле изоэнтропического течения идеального газа, на которых ускорение и градиент давления принимают бесконечно большие значения. Появление в потоке бесконечных ускорений физически невозможно и указывает на нарушение предположений, положенных в основу анализа течения, прежде всего условия его иэоэнтропичности; вследствие этого происходит перестройка поля течения с образованием линий (поверхностей) сильного разрыва не совпадающих, естественно, с П. л. - ударных волн.

Наиболее подробно этот вопрос исследован для плоско-параллельного течения. Если от физической плоскости х, у перейти к плоскости годографа (см. Годографа метод), например, к плоскости переменных (λ), (θ), где (λ) - приведённая скорость, (θ) - угол, образованный вектором скорости с осью х, то на П. л. это преобразование имеет особенность. Следовательно, на П. л. якобиан преобразования D (x, y)/D((λ), (θ)) = 0, что эквивалентно условию D((φ), (ψ))/D((λ), (θ)) = 0 в силу взаимно однозначного соответствия между плоскостями (х, y) и ((φ), (ψ)), где (φ), (ψ) - безразмерные потенциал скорости и функция тока.

Таким образом, П. л. могут возникать только в сверхзвуковой области поля течения при некотором Маха числе М≥1. П. л. ограничивают область, в которую течение нельзя продолжить изоэитропически, эта область называется также запретной областью. Значение числа Маха ML, при котором появляется П. л., зависит от формы тела. Если местное число Маха М < МL то возможен плавный переход от дозвукового режима течения к сверхзвуковому, и наоборот. Это свойство используется, например, при проектировании Лаваля сопел.

Предкрылок

Статья большая, находится на отдельной странице.

Предполетная подготовка

Предполетная подготовка - один из видов подготовки к полётам летательного аппарата и экипажа. П. п. летательного аппарата включает выполнение работ по его техническому обслуживанию, предусмотренных Регламентом технического обслуживания на каждый тип летательного аппарата. П. п. проводится непосредственно перед полётом и включает предполётный осмотр летательного аппарата, ввод исходных данных (программ) в навигационную и специальную системы, проверку соответствия заправки и зарядки систем летательного аппарата согласно заданию на полёт и в случае необходимости дозаправку (дозарядку), проверку готовности летательного аппарата к полёту согласно заданию и другие работы. После выполнения П. п. техник летательного аппарата и специалисты заполняют журнал подготовки летательного аппарата к полёту. По прибытии лётного состава техник летательного аппарата докладывает командиру летательного аппарата о готовности к полёту, о количестве заправленного топлива и снаряжения летательного аппарата согласно заданию на полёт. Экипаж проверяет готовность летательного аппарата в объёме требований инструкции экипажу и согласно заданию на полёт и производит приём летательного аппарата. Командир экипажа расписывается в контрольном листе о приёме летательного аппарата.

П. п. экипажа организуется и проводится командиром летательного аппарат перед каждым полётом не позже чем за 1 ч до намеченного времени вылета и включает: изучение информации об аэронавигационной обстановке по маршруту полёта, состоянии и оборудовании аэродромов вылета, посадки и запасных аэродромов, о средствах радионавигационного, радиосвязного и светотехнического обеспечения полёта; изучение метеорологической обстановки по маршруту полёта, на аэродромах вылета, посадки и запасных аэродромах; проведение необходимых расчётов, в том числе штурманского расчёта, расчёта максимально допустимой взлётной массы летательного аппарата, длины сбалансированной взлётной дистанции и т. п.; получение необходимой полётной документации; приёмку летательного аппарата от инженерно-технической службы или от сменяемого экипажа, проверку наличия технической документации и контроль устранения неисправностей; получение диспетчерского разрешения на вылет; другие работы, предусмотренные соответствующими Руководствами по лётной эксплуатации летательных аппаратов. После выполнения предписанных правилами П. п. операций каждый член экипажа докладывает командиру летательного аппарата о готовности к полёту.

Преобразуемый аппарат

Статья большая, находится на отдельной странице.

Прерванный взлет

Прерванный взлет - взлёт, прекращённый в процессе разбега самолета, причиной П. в. может быть отказ какой-либо системы, затрудняющий выполнение полёта, или отказ двигателя многодвигательного самолёта, обнаруженный на скорости, которая меньше скорости принятия решения. Торможение самолёта при П. в. выполняется с применением всех средств гашения скорости (торможение колёс шасси, реверсирование тяги двигателя, выпуск интерцепторов и т. п.) до полной остановки самолёта.

Претензии и иски

Претензии и иски - при воздушных перевозках - см. в статье Ответственность имущественная.

Приборная доска

Приборная доска - элемент конструкции рабочего места члена экипажа; служит для размещения в соответствии с определенными правилами или требованиями средств системы отображения информации и управления, используемых членом экипажа. По назначению различают П. д. летчика, штурмана, бортинженера и т. п. Они могут быть амортизированными или неамортизированными, каркасными или панельными, однопанельными (сплошными) или многопанельными, плоскими или изогнутыми, наклонными или вертикальными, откидными или неподвижными.

Основные элементы конструкции П. д. - панель (панели), каркас, амортизаторы и крепёжные детали. Для установки индикаторов в П. д. делаются вырезы. Расстояние между вырезами для соседних индикаторов по линии, соединяющей их центры, должно быть не менее 5 мм. П. д. изготовляются из листового дуралюмина толщиной 3-5 мм и окрашиваются в чёрный или серый цвет или цвет интерьера кабины. П. д. устанавливаются на расстоянии 600-900 мм от глаз члена экипажа и таким образом, чтобы направление взгляда по отношению к плоскости П. д. было как можно ближе к перпендикуляру. Недостаточный наклон («разворот») П. д. приводит к погрешностям параллакса при отсчёте показаний индикаторов и к «колодезному» эффекту (затенению шкалы индикатора корпусом). Компоновка П. д. лётчиков самолётов и вертолётов регламентируется стандартами. В наилучших по обзору зонах П. д. устанавливают наиболее важные и часто используемые индикаторы. Не рекомендуется установка индикаторов и сигнализаторов в зоне П. д., затеняемой ручкой управления или штурвалом.

На П. д. самолётов 30-х гг. было от 5 до 10 приборов. В период Второй мировой войны на истребителях устанавливалось до 20 индикаторов. В 60-70-е гг. число индикаторов и сигнализаторов возросло до 50, а к началу 80-х гг. на некоторых самолётах до 150. Число приборов на П. д. сокращается при использовании экранных индикаторов.

Приборная скорость

Приборная скорость - скорость летательного аппарата, которую показывает в полёте бортовой прибор-указатель, если принцип его работы основан на измерении разности давлений в динамической и статической камерах приёмника воздушных давлений (приёмник воздушного давления). Реальная система приёмник воздушного давления, в отличие от «идеальной», не индицирует непосредственно значение индикаторной земной скорости V(a) (см. Индикаторная скорость) вследствие неидеальности приёмника давлений, нахождения его в возмущённом летательным аппаратом воздушном потоке, инерционности воздухопроводов, связывающих приёмник воздушного давления с указателем, и неиндивидуальной градуировки шкалы указателя. Для определения V(ia) в индицируемую указателем скорость Vyк необходимо ввести поправки: (δ)Va - аэродинамическую, учитывающую погрешности, вносимые как летательным аппаратом, так и самим приёмником воздушного давления в измерения полного и статического давлений, она определяется в ходе лётно-конструкторских (заводских) испытаний каждого нового летательного аппарата:(δ)Vзaп - на запаздывание передачи давления по воздухопроводу из статической (а иногда и динамической) камеры приёмника воздушного давления в корпус прибора-указателя; (δ)Vинстр - инструментальную, учитывающую то, что градуировка шкал указателей скорости при массовом их производстве осуществляется по осреднённым для всей партии характеристикам манометрических и анероидных коробок. Расчёт индикаторной земной скорости V(iz), индикаторной скорости Vi и воздушной скорости V осуществляется по формулам:

V(13) = Vpr + (δ)Va + (δ)Vзап; V1 = V(13) + (δ)Vсж; V = V1/(∆ )1/2,

где Vpr = Vук + (δ)Vинстр

- скорость летательного аппарата, регистрируемая бортовой системой измерений; (δ)Vсж = Vi-V(iз) - поправка на сжимаемость воздуха;

(∆ ) = QH/Qc = PHTc/pcTH

- относительная плотность воздуха на высоте полета; QH, рн, Тн - плотность, атмосферное давление и температура воздуха на высоте полёта; Qc, pс, Тс - то же на нулевой высоте в стандартных земных условиях (см. Международная стандартная атмосфера).

Приведённая скорость

Приведённая скорость - течения - безразмерная величина (λ), равная отношению скорости газа V к критической скорости течения a*:

(λ) = V/a*.

Используется при анализе движения идеального совершенного газа. Для адиабатического течения П. с. изменяется на конечном интервале

0≤(λ)≤(λ)max = ((γ) + l)/((γ)-l)1/2,

где (γ) - показатель адиабаты, и связана с местным Маха числом М и максимальной скоростью Vmax формулами, получаемыми на основе Бернулли уравнения. Величины (λ) и М одновременно принимают значение, равное 1, поэтому для дозвуковых течений (λ) < 1, а для сверхзвуковых (λ) > 1.

Приведенные параметры двигателя

Приведенные параметры двигателя - параметры газотурбинного двигателя, приведённые к стандартным атмосферным условиям с использованием формул приведения. При испытаниях авиационных газотурбинных жвигателей значения параметров внешней среды (давление, температура и влажность) отличаются от их стандартных значений, соответствующих заданным условиям полёта (высота H и Маха число полёта М(∞)). Поэтому полученные в этих испытаниях значения основных параметров двигателя приводятся к стандартным атмосферным условиям. На земле им соответствуют температура воздуха (ГЯ()) = 288,16 К, давление (р//0) = 101325 Па, влажность d0 = 0. Сравнение параметров газотурбинных двигателей, определённых в атмосферных условиях, отличных от стандартных, производится с использованием формул приведения.

Формулы приведения параметров газотурбинных двигателей к стандартным условиям широко применяются в практике стендовых испытаний двигателей, а также при анализе результатов лётных испытаний. Они получены на основе безразмерных соотношений, определяющих необходимые и достаточные условия подобия в газотурбинных двигателях (исключая процессы в камерах сгорания) в предположении, что возможное влияние изменения атмосферных условий на геометрические характеристики проточной части, на свойства рабочего тела и Рейнольдса числа Re в элементах двигателя не сопровождается заметным отличием характеристик элементов в условиях испытаний и при стандартных атмосферных условиях.

Практика испытаний авиационных двигателей показала, что допущения, принятые при выводе формул приведения, недостаточно обоснованы и в ряде случаев приводят к значительным погрешностям. В результате многочисленных исследований влияния изменения атмосферных условий (температуры, влажности атмосферного воздуха), числа Re на характеристики газотурбинных двигателей обычные формулы приведения основных параметров двигателя к стандартным атмосферным условиям были уточнены с помощью коэффициентов. Уточняющие коэффициенты к формулам приведения определяются расчётным, экспериментальным и статистическим методами.

Привязной аэростат

Статья большая, находится на отдельной странице.

Приемистость двигателя

Приемистость двигателя - процесс быстрого увеличения тяги (мощности) двигателя путём повышения расхода топлива при резком перемещении рычага управления, оцениваемый временем от начала перемещения рычага управления до момента достижения тяги (мощности), равной 95% её значения на конечном режиме. Исходными режимами при П. д. обычно являются режимы земного и полётного малого газа, конечными - максимальный бесфорсажный режим и режим полного форсирования, а также режимы, специфичные для двигателя конкретного летательного аппарата (см. также Режим работы двигателя). В соответствии с Нормами лётной годности самолётов гражданской авиации время П. д. от малого газа до максимального (взлётного) режима в стандартных атмосферных условиях на уровне моря должно быть не более 5 с. Это время назначается из условия обеспечения безопасного ухода летательного аппарата на второй круг при неудавшейся посадке. Определенные требования предъявляются к линейности изменения тяги (мощности) и т. п. Изменение времени П. д. по высоте, скорости полёта и температуре атмосферного воздуха существенно зависит от динамических свойств двигателя, программы регулирования подачи топлива, изменения положения регулирующих устройств в элементах двигателя. Для программ регулирования двигателя, подчинённых законам подобия, характерно увеличение времени П. д. при возрастании высоты, уменьшении скорости полёта и повышении температуры атмосферного воздуха.

На практике под П. д. нередко понимают способность двигателя быстро изменять свой режим работы.

Приемник воздушных давлений

Приемник воздушных давлений (ПВД) - приёмник давлений, устанавливаемый на наружной поверхности летательного аппарата и служащий для восприятия полного и статического давлений, используемых для измерения скорости и высоты полёта летательного аппарата. Представляет собой цилиндр (диаметр 20-25 мм, длина около 300 мм; ось направлена вдоль потока) с оживальной головной частью, на прямом срезе которой расположено отверстие, воспринимающее полное давление набегающего потока. На расстоянии 160-250 мм от среза размещается приёмник статического давления в виде системы отверстий, расположенных группами сверху и снизу на боковой поверхности приёмник воздушного давления и объединённых кольцевой осреднительной камерой (для уменьшения чувствительности приёмника к изменению ориентации ПВД по отношению к набегающему потоку). Для передачи давлений к чувствительным элементам служат специальные трубопроводы.

Приемники давлений

Приемники давлений - насадки аэродинамические, - устройства для восприятия давлений (в том числе полного и статического) газового потока, передачи их к измерительным преобразователям для измерения значений и определения по ним скорости (Маха числа) потока относительно летательного аппарата (его модели). Многообразные П. д. отличаются геометрическими, конструктивными и функциональными признаками. Простейшими из них являются Пито трубка, отверстия в стенке (дренажные отверстия) и другие. На летательных аппаратах для измерения скорости и высоты полёта широко используются приёмники воздушных давлений. Особый класс составляют П. д., используемые в аэродинамическом эксперименте. Наиболее типичными из них являются шеститочечный (полусферический) приёмник Центрального аэрогидродинамического института для измерений в дозвуковом потоке и конический - в сверхзвуковом. По разности давлений в точках 1, 3 и 4, 5 судят о значениях углов, образуемых вектором скорости потока с осью приёмника. Таким же образом определяется направление скорости сверхзвукового потока коническим приёмником. При этом скорость (число Маха) определяется по отношению средний давления в точках 1, 3, 4 и 5 к полному давлению за прямым скачком уплотнения.

Приземление

Приземление - см. в статье Посадка.

Присоединенная маасса

Присоединенная маасса - величина с размерностью массы, которая прибавляется к массе тела, неравномерно движущегося в жидкости (газе), для учёта воздействия жидкости на это тело. Если тело движется поступательно в идеальной жидкости с переменный скоростью V(t), то, несмотря на отсутствие трения, на него действует сила сопротивления аэродинамического X. Причина её появления состоит в том, что тело вовлекает в движение окружающую жидкость и сообщает ей некоторую кинетическую энергию Т; например, для сферы радиуса а:

T = (λ)V2/2,

где (λ) = 2(πρ)a3/3, (ρ) - плотность жидкости.

Приращение кинетической энергии жидкости происходит за счёт работы тела против силы сопротивления, следовательно,

Х = (l/V)dT/dt = -(λ)dV/dt.

Для сферы массы m, движущейся под действием силы F, второй закон механики принимает вид

(m + (λ))dV/dt = F.

Таким образом, величина (λ) характеризует как бы дополнительную инерционность сферы при её движении в жидкости; поэтому (λ) и называют П. м.

Аналогичным образом можно вычислить П. м. и в общем случае произвольного тела, но в этом случае она будет тензорной величиной, характеризующей кажущееся увеличение массы, моментов инерции, статических и центробежных моментов тела в жидкости по сравнению с их значениями в вакууме. По порядку величины П. м. равна массе жидкости (газа) в объёме тела, и при движении самолёта или ракеты в воздухе она мала по сравнению с их массой, и её можно не учитывать. Но в ряде случаев, например, при полёте дирижабля или движении крыла под водой с переменной скоростью, ударе о воду и др., П. м. имеет существенное значение. В связи с этим разработаны и используются экспериментальные методы определения П. м.

Прицел авиационный

Прицел авиационный - устройство для прицеливания при стрельбе из авиационного пулемётно-пушечного оружия, при пуске неуправляемых ракет, при бомбометании. Основные блоки П. - визирное устройство, вычислитель, блок связи с пилотажными датчиками, пульт ввода данных и управления, прицельный индикатор. При совмещении визира и прицельного индикатора в некоторых конструкциях П. прицельные данные отображаются в поле зрения визира.

Визирное устройство определяет координаты цели относительно положения летательного аппарат и выдаёт эти данные в вычислитель. В вычислитель вводятся также данные датчиков параметров полёта - высоты, скорости, углов наклона траектории, атаки и скольжения и т. п. Вручную с помощью пульта ввода данных вводятся баллистические характеристики оружия. Вычислитель вырабатывает угловые поправки стрельбы - углы упреждения, которые отображаются на прицельном индикаторе или выдаются на автопилот. Задачей лётчика или автопилота является такое управление летательным аппаратом, при котором направление вектора его скорости совпадает с вычисленным направлением стрельбы относительно цели.

В период Великой Отечественной войны и в послевоенные годы в СССР были созданы серии П. с различной степенью автоматизации решения прицельных задач, в том числе ОПБ - оптический П. бомбометания и АСП - авиационные стрелковые П. Внедрение П. на боевых летательных аппаратах существенно повысило точность и боевую эффективность применения авиационного оружия по сравнению с точностью и эффективностью, которые обеспечивались простейшими механическими и оптическими коллиматорными прицельными устройствами довоенного периода. С появлением в авиации вычислительной техники П. стали заменяться прицельно-навигационными системами.

Прицельно-навигационная система

Статья большая, находится на отдельной странице.

Пробег

Пробег - замедляющееся движение самолёта по взлётно-посадочной полосе до полной остановки после приземления или принятия пилотом решения о прекращении разбега на взлёте. Дистанция П. приземлившегося самолёта является одной из основных составляющих, определяющих потребную для посадки длину взлётно-посадочной полосы. При длине взлётно-посадочной полосы, ненамного превышающей минимально потребную для посадки, П. осуществляется с максимальным использованием всех средств торможения. К этим средствам, кроме тормозов колёс шасси, относятся реверсивные устройства двигателей, интерцепторы, увеличивающие сопротивление самолёта и уменьшающие значение подъёмной силы при П. Иногда для сокращения дистанции П. используют тормозные парашюты. Наиболее эффективным способом сокращения длины П. является уменьшение посадочной скорости. На авианесущих кораблях для сокращения дистанции П. применяют аэрофинишёры, а для предотвращения выбега самолёта с взлётно-посадочной полосы (посадочной палубы) в её торце часто устанавливают аварийный барьер.

Проводка управления самолётом

Проводка управления самолётом - система механических элементов (труб, качалок и т. п.), передающих усилия и перемещения от рычагов управления к рулям управления. По виду возникающих в П. у. напряжений различаются: жёсткая проводка, работающая на растяжение и сжатие (пуш-пульные тяги); гибкая (мягкая) проводка, работающая только на растяжение; вращательная проводка, работающая только на кручение, и смешанная проводка, включающая элементы различных типов проводки.

Жёсткая П. у. в основном состоит из тонкостенных труб круглого сечения, которые шарнирно подвешены на рычагах-качалках. Тяги могут быть с изменяемой или фиксированной длиной. У тяг с изменяемой длиной один или оба наконечника сделаны регулируемыми. Для повышения надёжности жёсткую П. у. иногда дублируют в виде разнесённых по разным бортам ветвей. В П. у. могут устанавливаться компенсаторы линейных деформаций конструкции самолёта.

Гибкая П. у. состоит из прямой и возвратной ветвей. В ней обычно используются особо гибкие нераскручивающиеся тросы, но могут применяться также металлические ленты и проволока. Концы тросов заделываются в наконечники. Соединение двух сопряженных концов тросов и натяжение проводки обеспечивается тандерами. Для изменения направления тросовой П. у. служат устанавливаемые на кронштейнах ролики с ограничителями, предотвращающими сход тросов с роликов. Постоянство натяжения тросовой П. у. при температурных изменениях окружающей среды обеспечивается регуляторами натяжения. Для повышения надёжности ветви тросовой П. у. могут дублироваться.

Во вращательной П. у. возвратно-поступательные движение рычагов управления преобразуется шариковыми преобразователями в реверсивное вращательное движение тяг-валов, а оно, также с помощью шариковых преобразователей, обеспечивает соответствующее отклонение рулей управления. Компенсация линейных деформаций обеспечивается шлицевыми соединениями.

В П. у. могут входить механизмы имитации аэродинамических нагрузок, исполнительные механизмы систем улучшения характеристик устойчивости и управляемости и другие. На самолётах с герметичными кабинами с целью снижения потерь давления в местах прохода П. у. через герметичные перегородки устанавливаются гермовыводы.

П. у. вертолётом в общем аналогична описанной выше.

См. также Электродистанционная система управления.

Прогноз погоды

Прогноз погоды (от греческого pr(ó)gn(o)sis - предвидение, предсказание) - научно обоснованное предположение о предстоящих изменениях погоды, составленное на основе анализа развития крупномасштабных атмосферных процессов (синоптических процессов) и знаний о законах развития этих процессов во времени и пространстве. При метеорологическом обеспечении полётов летательных аппаратов составляются авиационные П. п. по аэродрому, району аэродрома, воздушным трассам, местным воздушным линиям и районам полётов. В зависимости от вида авиационных П. п. в них даются характеристики облачности (количество, форма, высота нижней и верхней границ), осадков, видимости, ветра (направление и скорость) и температуры воздуха на различных высотах, высота изотермы 0(°)С, высота тропопаузы, закрытие облаками гор и искусственных препятствий, а также указываются опасные явления - сильная атмосферная турбулентность (в облаках или при ясном небе), возможность сильного, умеренного или слабого обледенения (в облаках, осадках) и другое. П. п. оформляются в виде текстовых сообщений, в табл., либо наносятся на карты погоды и в такой форме передаются потребителям.

Предыдущая страница Следующая страница
Главная